首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
测绘学   4篇
地球物理   4篇
地质学   18篇
海洋学   9篇
天文学   18篇
综合类   1篇
自然地理   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   13篇
  2012年   9篇
  2011年   3篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
41.
The UNEP in its regional seas program in 1989 has included Pakistan in a group of countries which are vulnerable to the impact of rising sea level. If the present trend of sea level rise (SLR) at Karachi continues, in the next 50 years the sea level rise along the Pakistan Coast will be 50 mm (5 cm). Since the rising rates of sea level at Karachi are within the global range of 1-2 mm/year, the trends may be treated as eustatic SLR. Historical air temperature and sea surface temperature (SST) data of Karachi also show an increasing pattern and an increasing trend of about 0.67°C has been registered in the air temperature over the last 35 years, whereas the mean SST in the coastal waters of Karachi has also registered an increasing trend of about 0.3°C in a decade. Sindh coastal zone is more vulnerable to sea level rise than Baluchistan coast, as uplifting of the coast by about 1-2 mm/year due to subduction of Indian Ocean plate is a characteristic of Baluchistan coast. Within the Indus deltaic creek system, the area nearby Karachi is more vulnerable to coastal erosion and accretion than the other deltaic region, mainly due to human activities together with natural phenomena such as wave action, strong tidal currents, and rise in sea level. Therefore, The present article deals mainly with the study of dynamical processes such as erosion and accretion associated with sea level variations along the Karachi coast and surrounding Indus deltaic coastline. The probable beach erosion in a decade along the sandy beaches of Karachi has been estimated. The estimates show that 1.1 mm/year rise in sea level causes a horizontal beach loss of 110 mm per year. Therefore, coast eroded with rise in sea level at Karachi and surrounding sandy beaches would be 1.1 m during a period of next 10 years. The northwestern part of Indus delta, especially the Gizri and Phitti creeks and surrounding islands, are most unstable. Historical satellite images are used to analyze the complex pattern of sediment movements, the change in shape of coastline, and associated erosion and accretion patterns in Bundal and Buddo Islands. The significant changes in land erosion and accretion areas at Bundal and Buddo Islands are evident and appear prominently in the images. A very high rate of accretion of sediments in the northwestern part of Buddo Island has been noticed. In the southwest monsoon season the wave breaking direction in both these islands is such that the movement of littoral drift is towards west. Erosion is also taking place in the northeastern and southern part of Bundal Island. The erosion in the south is probably due to strong wave activities and in the northeast is due to strong tidal currents and seawater intrusion. Accretion takes place at the northwest and western parts of Bundal Island. By using the slope of Indus delta, sea encroachment and the land area inundation with rising sea level of 1 m and 2 m have also been estimated.  相似文献   
42.
Maldives, a South Asian small island nation in the northern part of the Indian Ocean is extremely vulnerable to the impacts of Sea Level Rise (SLR) due to its low altitude from the mean sea level. This artricle attempts to estimate the recent rates of SLR in Maldives during different seasons of the year with the help of existing tidal data recorded in the Maldives coast. Corresponding Sea Surface Temperature (SST) trends, utilizing reliable satellite climatology, have also been obtained. The relationships between the SST and mean sea level have been comprehensively investigated. Results show that recent sea level trends in the Maldives coast are very high. At Male, the capital of the Republic of Maldives, the rising rates of Mean Tidal Level (MTL) are: 8.5, 7.6, and 5.8 mm/year during the postmonsoon (October-December), Premonsoon (March-May) and southwest monsoon (June-September) seasons respectively. At Gan, a station very close to the equator, the increasing rate of MTL is maximum during the period from June to September (which is 6.2 mm/year). These rising trends in MTL along the Maldives coast are certainly alarming for this small developing island nation, which is hardly one meter above the mean sea level. Thus there is a need for careful monitoring of future sea level changes in the Maldives coast. The trends presented are based on the available time-series of MTL for the Maldives coast, which are rather short. These trends need not necessarily reflect the long-term scenario. SST in the Maldives coast has also registered significant increasing trend during the period from June to September. There are large seasonal variations in the SST trends at Gan but SST and MTL trends at Male are consistently increasing during all the seasons and the rising rates are very high. The interannual mode of variation is prominent both in SST as well as MTL. Annual profile of MTL along the Maldives coast is bimodal, having two maxima during April and July. The April Mode is by far the dominant one. The SST appears to be the main factor governing the sea level variations along the Maldives coast. The influence of SST and sea level is more near the equatorial region (i.e., at Gan). There is lag of about two months for the maximum influence of SST on the sea level. The correlation coefficient between the smoothed SST and mean tidal level at Gan with lag of two months is as high as ~ +0.8, which is highly significant. The corresponding correlation coefficients at Male with the lags of one and two months are +0.5 and +0.3, respectively. Thus, the important finding of the present work for the Maldives coast is the dominance of SST factor in sea level variation, especially near the region close to the equator.  相似文献   
43.
The objective of this study is to produce groundwater potential map (GPM) and its performance assessment using a data-driven evidential belief function (EBF) model. This study was carried out in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran. It’s conducted in three main stages such as data preparation, groundwater potential mapping using EBF and validation of constructed model using receiver operating characteristic (ROC) curve. At first, 864 groundwater data were collected from spring locations; out of that, 605 (70%) locations were selected for training/model building and the remaining 259 (30%) cases were used for the model validation. In the next step, 12 effective factors such as altitude, slope aspect, slope degree, slopelength (LS), topographic wetness index (TWI), plan curvature, land use, lithology, distance from rivers, drainage density, distance from faults and fault density were extracted from the spatial database. Subsequently, GPM was prepared using EBF model in ArcGIS environment. Finally, the ROC curve and area under the curves (AUC) were drawn for verification purposes. The validation of results showed that the AUC for EBF model is 81.72%. In general, this result can be helpful for planners and engineers in water resource management and land-use planning.  相似文献   
44.
Natural Resources Research - The weighted mean and the multiple regression techniques are two methods that are employed to estimate elemental background concentration of lithologies upstream of...  相似文献   
45.
In this paper, we have investigated linear and nonlinear propagation of kinetic Alfven waves in which the electrons have been assumed to follow generalized (\(r,q\)) distribution. We have shown that (\(r,q\)) distribution gives us most of the distributions observed in space plasmas. We have varied the flatness parameter \(r\) and the tail parameter \(q\) to explore the linear and nonlinear propagation characteristics of kinetic Alfven waves. We have also discussed the limiting cases. It has been shown that our results agree well with Fast and Freja observations of the nonlinear kinetic Alfven waves. An important feature of our study is the formation of rarefactive solitary structures. It has been shown that this result cannot be obtained with Maxwellian distribution and that it agrees well with the observations of Fast and Freja satellites.  相似文献   
46.
This paper presents the results of a case study performed in Well BT-1 in the Blacktip field; an offshore field located in northern Australia. An analytical model based on mud logging data was used to estimate a formation’s strength in Well BT-1. The drilled well is vertical and the input data to the model included the rate of penetration, rotary speed, weight on bit and torque values of the bit obtained from mud logging data. The final model was completed in several steps: estimation of the bit constants from either lab or field data, backward calculation of rock strength using a drilling performance model, smoothing of the estimated log to obtain the apparent rock strength log and classifying the formations into zones with similar strength values. The results of a log-based approach carried out in Well BT-1 were used to do the modelling. The results presented here indicate that the drilling performance model is able to predict the formation strength reasonably well. Based on the results, care should be taken when the model is used for the intervals where the bit is worn and dull, since within these intervals the model tends to over-estimate the rock strength.  相似文献   
47.
We report here for the first time geochemical, mineralogical and stable carbon and oxygen isotopic data on the crystalline basement rocks of the 1993 Killari earthquake region of Maharashtra (India), which is covered by a thick suite of Deccan volcanics. Our results revealed the hitherto unknown amphibolite–granulite nature of the 2.5?Ga basement, which contains 2.00–2.28?wt% of CO2. The stable carbon (δ13C) and oxygen (δ18O) isotopic measurements on carbonates separated from two basement samples KIL-13 (440.5?m depth) and KIL-20 (499.6?m depth) collected from the KLR-1 borehole drilled in the epicentral region showed the respective values of ?6.23 and ?6.22‰ versus PDB for δ13C and 7.94 and 8.11‰ versus SMOW for δ18O. The samples plot in the primary igneous carbonatite field, indicating the mantle origin of the carbonates, derived through the process of mantle metasomatism from the deep mantle carbon reservoir. This would suggest large-scale crust-mantle thermal fluid interaction beneath the Killari seismogenic region, which is characterized by massive upwarping of the high-velocity mafic crust and retrograde metamorphism.  相似文献   
48.
Mahmood  S. A.  Shahzad  M.  Batool  S.  Amer  A.  Kaukab  I. S.  Masood  A. 《Geotectonics》2021,55(4):563-583
Geotectonics - The collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to...  相似文献   
49.
The paper tries to estimate the rate of waste generation per head/per day, to identify suitable sites for waste disposal, to find out optimal route for collection vehicles and to analyze the financial aspects of solid waste management in Moradabad City, India.The study is based on sample of 2,500 households and secondary data. The City generates about 318 tones of solid waste with an average per capita rate of 460 gram per day. Collection and disposal efficiency is nearly 64%. Sensitivity analysis of the present disposal site as per the norms of Central Pollution Control Board indicates that it is moderately suitable. Subsequently two new disposal sites were identified. Redefined routes and related issues were evaluated in financial terms. It is estimated that by adopting the proposed plan, the expenditure on waste management will increase by about 52%, but at the same time about 90% of city area and 95% of city population will be served.  相似文献   
50.
Oceanic Islands in the Pacific and Indian Oceans have extremely small land areas, usually less than 500 km2, with maximum height about 4 m above sea level. The Republic of Maldives is an independent island nation in the Indian Ocean south of Sri Lanka which stretches vertically in the Indian Ocean from 07° 06'N - 0° 42'S. The land area of this island country is about 300 km2, and none of Maldives' 1190 islands has an elevation more than 3 m above sea level. In fact the Maldives has the distinction of being the flattest country on earth, making it extremely vulnerable to the effects of global warming. Of the south Asian countries, the Maldives is the most vulnerable nation, facing severe consequences as a result of global warming and sea level rise (SLR). Because of their obvious vulnerability to SLR, the Government of Maldives is very much concerned about climate change. As global warming and the related SLR is an important integrated environmental issue, the need of the hour is to monitor and assess these changes. The present article deals mainly with the analysis of the tidal and Sea Surface Temperature (SST) data observed at Male and Gan stations along the Maldives coast in the northern and southern hemispheres, respectively. The objective of the analysis is to study the trends of these parameters. Trend analysis is also performed on the corresponding air temperature data of both stations. The results show that Maldives coastal sea level is rising in the same way (rising trend) as the global sea level. The mean tidal level at Male has shown an increasing trend of about 4.1 mm/year.Similarly at Gan, near the equator,it has registered a positive trend of about 3.9 mm/year.Sea level variations are the manifestations of various changes that are taking place in the Ocean-Atmosphere system. Therefore, the variations in SST and air temperature are intimately linked to sea level rise. It is found that SST and air temperature have also registered an increasing trend at both stations. The evidence of rising trends suggest that careful future monitoring of these parameters is very much required. Tropical cyclones normally do not affect the Maldives coast. However, due to its isolated location, the long fetches in association with swells generated by storms, that originated in the far south have resulted in flooding. Thus the rising rate of sea level with high waves and flat topography have increased the risk of flooding and increased the rate of erosion and alteration of beaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号